A documentação é a média incondicional do processo, e x03C8 (L) é um polinômio racional, de grau infinito de lag, (1 x03C8 1 Lx03C8 2 L 2 x 2026). Nota: A propriedade Constant de um objeto modelo arima corresponde a c. E não a média incondicional 956. Por decomposição de Wolds 1. A equação 5-12 corresponde a um processo estocástico estacionário desde que os coeficientes x03C8 i sejam absolutamente somaveis. Este é o caso quando o polinômio AR, x03D5 (L). É estável. O que significa que todas as suas raízes estão fora do círculo unitário. Além disso, o processo é causal desde que o polinômio MA é invertido. O que significa que todas as suas raízes estão fora do círculo unitário. Econometrics Toolbox reforça a estabilidade e a invertibilidade dos processos ARMA. Quando você especifica um modelo ARMA usando arima. Você obtém um erro se você inserir coeficientes que não correspondem a um polinômio AR estável ou polinômio MA reversível. Similarmente, a estimativa impõe restrições de estacionaridade e de invertibilidade durante a estimativa. Referências 1 Wold, H. Um estudo na análise de séries estacionárias do tempo. Uppsala, Suécia: Almqvist amp Wiksell, 1938. Selecione seu PaísDocumentação tsmovavg saída tsmovavg (tsobj, s, lag) retorna a média móvel simples para o objeto de série de tempo financeiro, tsobj. Lag indica o número de pontos de dados anteriores usados com o ponto de dados atual ao calcular a média móvel. A saída tsmovavg (vetor, s, lag, dim) retorna a média móvel simples para um vetor. Lag indica o número de pontos de dados anteriores usados com o ponto de dados atual ao calcular a média móvel. A saída tsmovavg (tsobj, e, timeperiod) retorna a média móvel ponderada exponencial para a série de tempo financeiro objeto, tsobj. A média móvel exponencial é uma média móvel ponderada, em que timeperiod especifica o período de tempo. As médias móveis exponenciais reduzem o desfasamento aplicando mais peso aos preços recentes. Por exemplo, uma média móvel exponencial de 10 períodos pondera o preço mais recente em 18,18. Percentual Exponencial 2 / (TIMEPER 1) ou 2 / (WINDOWSIZE 1). Saída tsmovavg (vetor, e, timeperiod, dim) retorna a média móvel ponderada exponencial para um vetor. A média móvel exponencial é uma média móvel ponderada, em que timeperiod especifica o período de tempo. As médias móveis exponenciais reduzem o desfasamento aplicando mais peso aos preços recentes. Por exemplo, uma média móvel exponencial de 10 períodos pondera o preço mais recente em 18,18. (2 / (intervalo de tempo 1)). A saída tsmovavg (tsobj, t, numperiod) retorna a média móvel triangular para a série de tempo financeiro objeto, tsobj. A média móvel triangular alisa os dados. Tsmovavg calcula a primeira média móvel simples com a largura da janela de ceil (numperíodo 1) / 2. Em seguida, calcula uma segunda média móvel simples na primeira média móvel com o mesmo tamanho de janela. Saída tsmovavg (vetor, t, numperiod, dim) retorna a média móvel triangular para um vetor. A média móvel triangular alisa os dados. Tsmovavg calcula a primeira média móvel simples com a largura da janela de ceil (numperíodo 1) / 2. Em seguida, calcula uma segunda média móvel simples na primeira média móvel com o mesmo tamanho de janela. A saída tsmovavg (tsobj, w, weights) retorna a média móvel ponderada para o objeto da série temporal financeira, tsobj. Fornecendo pesos para cada elemento na janela em movimento. O comprimento do vetor de peso determina o tamanho da janela. Se fatores de peso maiores forem usados para preços mais recentes e fatores menores para preços anteriores, a tendência é mais responsiva a mudanças recentes. A saída tsmovavg (vetor, w, pesos, dim) retorna a média móvel ponderada para o vetor fornecendo pesos para cada elemento na janela em movimento. O comprimento do vetor de peso determina o tamanho da janela. Se fatores de peso maiores forem usados para preços mais recentes e fatores menores para preços anteriores, a tendência é mais responsiva a mudanças recentes. A saída tsmovavg (tsobj, m, numperiod) retorna a média móvel modificada para o objeto da série de tempo financeiro, tsobj. A média móvel modificada é semelhante à média móvel simples. Considere o argumento numperiod como o atraso da média móvel simples. A primeira média móvel modificada é calculada como uma média móvel simples. Os valores subseqüentes são calculados adicionando o novo preço e subtraindo a última média da soma resultante. A saída tsmovavg (vetor, m, numperiod, dim) retorna a média móvel modificada para o vetor. A média móvel modificada é semelhante à média móvel simples. Considere o argumento numperiod como o atraso da média móvel simples. A primeira média móvel modificada é calculada como uma média móvel simples. Os valores subseqüentes são calculados adicionando o novo preço e subtraindo a última média da soma resultante. Dim 8212 dimensão para operar ao longo de inteiro positivo com valor 1 ou 2 Dimensão para operar ao longo, especificado como um inteiro positivo com um valor de 1 ou 2. dim é um argumento de entrada opcional, e se não for incluído como uma entrada, o padrão Valor 2 é assumido. O padrão de dim 2 indica uma matriz orientada a linha, em que cada linha é uma variável e cada coluna é uma observação. Se dim 1. a entrada é assumida como sendo um vetor de coluna ou uma matriz orientada a coluna, onde cada coluna é uma variável e cada linha uma observação. E 8212 Indicador para vetor de caracteres de média móvel exponencial A média móvel exponencial é uma média móvel ponderada, em que timeperiod é o período de tempo da média móvel exponencial. As médias móveis exponenciais reduzem o desfasamento aplicando mais peso aos preços recentes. Por exemplo, uma média móvel exponencial de 10 períodos pondera o preço mais recente em 18,18. Porcentagem Exponencial 2 / (TIMEPER 1) ou 2 / (WINDOWSIZE 1) período de tempo 8212 Comprimento do período de tempo inteiro não negativo Select Your CountryI tem um conjunto de dados para o preço do ticker na bolsa de valores: time - price. Mas os intervalos entre pontos de dados não são iguais - de 1 a 2 minutos. Qual é a melhor prática para calcular a média móvel para tal caso Como fazê-lo em Matlab eu tendem a pensar que os pesos dos pontos devem depender do intervalo de tempo que foi passado desde o ponto anterior. Será que temos função em Matlab para calcular a média móvel com pesos personalizados dos pontos pediu Jul 30 14 at 19:01 Minha resposta é bastante semelhante a lakeshs um. Mas eu vou pensar o seu problema em termos de interpolação. Em primeiro lugar, uma média móvel, ou uma média de tempo de uma função, é a integral dela ao longo de um período de tempo, dividido pelo comprimento do tempo. No seu caso, o integral pode ser visto como uma soma, uma vez que, geralmente, em cada minuto o valor da função é o mesmo. No entanto, seus dados têm intervalos de tempo desiguais. Isso pode ser visto como pontos ausentes da função. Deixe-me explicar: para cada minuto x. Você deve ter um preço f (x). Mas por algumas vezes dizer x5. F (x) é indefinido. Uma das maneiras de se livrar das descontinuidades de uma função é a interpolação - atribua algum valor aos pontos em falta, de acordo com algumas regras de cálculo. O algoritmo mais simples é manter o valor anterior, que é essencialmente idéia lakeshs. Mas o benefício de pensar neste aspecto reside na capacidade de tornar seus dados mais precisos. Pode não se aplicar a um caso de mercado de ações, mas deve ser verdade em geral, como uma temperatura de medição ou velocidade do vento, que é garantido para mudar suavemente ao longo do tempo (em vez de manter constante durante 2 minutos e de repente mudar em um segundo). Você pode usar diferentes técnicas de interpolação para polir os dados. Polimento neste sentido é ok, porque de qualquer maneira você tem que usar o conceito de média. Uma boa interpolação deve aproximar os dados de um modelo que tenha provado funcionar com o problema real. CÓDIGO - Eu ajustei o intervalo máximo a 5 minutos para mostrar a diferença enorme entre os dois métodos. Depende da sua observação e experiência para decidir qual método (ou qualquer outro) é o melhor para prever o passado. Nota: os pontos indefinidos devem ser apresentados por NaN. Mas -1 parece mais fácil de jogar. Respondeu Jul 30 14 at 20: 40Soothing dados remove variação aleatória e mostra tendências e componentes cíclicos Inerente na coleta de dados levados ao longo do tempo é alguma forma de variação aleatória. Existem métodos para reduzir o cancelamento do efeito devido a variação aleatória. Uma técnica freqüentemente usada na indústria é suavizar. Essa técnica, quando corretamente aplicada, revela mais claramente a tendência subjacente, os componentes sazonais e cíclicos. Existem dois grupos distintos de métodos de alisamento Métodos de média Métodos de suavização exponencial Tomar médias é a maneira mais simples de suavizar os dados Vamos primeiro investigar alguns métodos de média, como a média simples de todos os dados passados. Um gerente de um armazém quer saber o quanto um fornecedor típico oferece em unidades de 1000 dólares. Ele / ela toma uma amostra de 12 fornecedores, aleatoriamente, obtendo os seguintes resultados: A média computada ou média dos dados 10. O gerente decide usar isto como a estimativa para despesa de um fornecedor típico. Esta é uma boa ou má estimativa O erro quadrático médio é uma maneira de julgar o quão bom é um modelo Vamos calcular o erro quadrático médio. O valor verdadeiro do erro gasto menos o valor estimado. O erro ao quadrado é o erro acima, ao quadrado. O SSE é a soma dos erros quadrados. O MSE é a média dos erros quadrados. Resultados do MSE por exemplo Os resultados são: Erro e esquadrado Erros A estimativa 10 A questão surge: podemos usar a média para prever a renda se suspeitarmos de uma tendência? Um olhar para o gráfico abaixo mostra claramente que não devemos fazer isso. A média pondera todas as observações passadas igualmente Em resumo, afirmamos que A média simples ou média de todas as observações passadas é apenas uma estimativa útil para previsão quando não há tendências. Se houver tendências, use estimativas diferentes que levem em conta a tendência. A média pesa todas as observações passadas igualmente. Por exemplo, a média dos valores 3, 4, 5 é 4. Sabemos, é claro, que uma média é calculada adicionando todos os valores e dividindo a soma pelo número de valores. Outra forma de calcular a média é adicionando cada valor dividido pelo número de valores, ou 3/3 4/3 5/3 1 1.3333 1.6667 4. O multiplicador 1/3 é chamado de peso. Em geral: barra fração soma esquerda (fratura direita) x1 esquerda (fratura direita) x2,. ,, Esquerda (frac direito) xn. Média Móvel - MA Como um exemplo de SMA, considere um título com os seguintes preços de fechamento em 15 dias: Semana 1 (a esquerda (frac direito)) são os pesos e, claro, (5 dias) 20, 22, 24, 25, 23 Semana 2 (5 dias) 26, 28, 26, 29, 27 Semana 3 (5 dias) 28, 30, 27, 29, 28 Uma MA de 10 dias seria média Os preços de fechamento para os primeiros 10 dias como o primeiro ponto de dados. O ponto de dados seguinte iria cair o preço mais antigo, adicionar o preço no dia 11 e tomar a média, e assim por diante, como mostrado abaixo. Conforme mencionado anteriormente, MAs atraso ação preço atual, porque eles são baseados em preços passados quanto maior for o período de tempo para o MA, maior o atraso. Assim, um MA de 200 dias terá um grau muito maior de atraso do que um MA de 20 dias porque contém preços nos últimos 200 dias. A duração da MA a ser utilizada depende dos objetivos de negociação, com MAs mais curtos usados para negociação de curto prazo e MAs de longo prazo mais adequados para investidores de longo prazo. O MA de 200 dias é amplamente seguido por investidores e comerciantes, com quebras acima e abaixo desta média móvel considerada como sinais comerciais importantes. MAs também transmitir sinais comerciais importantes por conta própria, ou quando duas médias se cruzam. Um aumento MA indica que a segurança está em uma tendência de alta. Enquanto um declínio MA indica que ele está em uma tendência de baixa. Da mesma forma, o impulso ascendente é confirmado com um crossover de alta. Que ocorre quando um MA de curto prazo cruza acima de um MA de longo prazo. Momento descendente é confirmado com um crossover de baixa, que ocorre quando um MA de curto prazo cruza abaixo de um MA de longo prazo.
No comments:
Post a Comment